
4

Euclid’s algorithm

In this chapter, we discuss Euclid’s algorithm for computing greatest com-
mon divisors. It turns out that Euclid’s algorithm has a number of very nice
properties, and has applications far beyond that purpose.

4.1 The basic Euclidean algorithm

We consider the following problem: given two non-negative integers a and
b, compute their greatest common divisor, gcd(a, b). We can do this using
the well-known Euclidean algorithm, also called Euclid’s algorithm.

The basic idea of Euclid’s algorithm is the following. Without loss of
generality, we may assume that a ≥ b ≥ 0. If b = 0, then there is nothing to
do, since in this case, gcd(a, 0) = a. Otherwise, if b > 0, we can compute the
integer quotient q := ba/bc and remainder r := a mod b, where 0 ≤ r < b.
From the equation

a = bq + r,

it is easy to see that if an integer d divides both b and r, then it also divides
a; likewise, if an integer d divides a and b, then it also divides r. From
this observation, it follows that gcd(a, b) = gcd(b, r), and so by performing
a division, we reduce the problem of computing gcd(a, b) to the “smaller”
problem of computing gcd(b, r).

The following theorem develops this idea further:

Theorem 4.1. Let a, b be integers, with a ≥ b ≥ 0. Using the division with
remainder property, define the integers r0, r1, . . . , r`+1, and q1, . . . , q`, where
` ≥ 0, as follows:

55

56 Euclid’s algorithm

a = r0,

b = r1,

r0 = r1q1 + r2 (0 < r2 < r1),
...

ri−1 = riqi + ri+1 (0 < ri+1 < ri),
...

r`−2 = r`−1q`−1 + r` (0 < r` < r`−1),

r`−1 = r`q` (r`+1 = 0).

Note that by definition, ` = 0 if b = 0, and ` > 0, otherwise.
Then we have r` = gcd(a, b). Moreover, if b > 0, then ` ≤ log b/ log φ+ 1,

where φ := (1 +
√

5)/2 ≈ 1.62.

Proof. For the first statement, one sees that for i = 1, . . . , `, we have ri−1 =
riqi +ri+1, from which it follows that the common divisors of ri−1 and ri are
the same as the common divisors of ri and ri+1, and hence gcd(ri−1, ri) =
gcd(ri, ri+1). From this, it follows that

gcd(a, b) = gcd(r0, r1) = gcd(r`, r`+1) = gcd(r`, 0) = r`.

To prove the second statement, assume that b > 0, and hence ` > 0. If
` = 1, the statement is obviously true, so assume ` > 1. We claim that for
i = 0, . . . , `−1, we have r`−i ≥ φi. The statement will then follow by setting
i = `− 1 and taking logarithms.

We now prove the above claim. For i = 0 and i = 1, we have

r` ≥ 1 = φ0 and r`−1 ≥ r` + 1 ≥ 2 ≥ φ1.

For i = 2, . . . , ` − 1, using induction and applying the fact the φ2 = φ + 1,
we have

r`−i ≥ r`−(i−1) + r`−(i−2) ≥ φi−1 + φi−2 = φi−2(1 + φ) = φi,

which proves the claim. 2

Example 4.1. Suppose a = 100 and b = 35. Then the numbers appearing
in Theorem 4.1 are easily computed as follows:

i 0 1 2 3 4
ri 100 35 30 5 0
qi 2 1 6

4.1 The basic Euclidean algorithm 57

So we have gcd(a, b) = r3 = 5. 2

We can easily turn the scheme described in Theorem 4.1 into a simple
algorithm, taking as input integers a, b, such that a ≥ b ≥ 0, and producing
as output d = gcd(a, b):

r ← a, r′ ← b

while r′ 6= 0 do
r′′ ← r mod r′

(r, r′)← (r′, r′′)
d← r

output d

We now consider the running time of Euclid’s algorithm. Naively, one
could estimate this as follows. Suppose a and b are k-bit numbers. The
algorithm performs O(k) divisions on numbers with at most k-bits. As each
such division takes time O(k2), this leads to a bound on the running time
of O(k3). However, as the following theorem shows, this cubic running time
bound is well off the mark.

Theorem 4.2. Euclid’s algorithm runs in time O(len(a) len(b)).

Proof. We may assume that b > 0. The running time is O(τ), where τ :=∑`
i=1 len(ri) len(qi). Since ri ≤ b for i = 1, . . . , `, we have

τ ≤ len(b)
∑̀
i=1

len(qi) ≤ len(b)
∑̀
i=1

(log2 qi + 1) = len(b)(`+ log2(
∏̀
i=1

qi)).

Note that

a = r0 ≥ r1q1 ≥ r2q2q1 ≥ · · · ≥ r`q` · · · q1 ≥ q` · · · q1.

We also have ` ≤ log b/ log φ+ 1. Combining this with the above, we have

τ ≤ len(b)(log b/ log φ+ 1 + log2 a) = O(len(a) len(b)),

which proves the theorem. 2

Exercise 4.1. This exercise looks at an alternative algorithm for comput-
ing gcd(a, b), called the binary gcd algorithm. This algorithm avoids
complex operations, such as division and multiplication; instead, it relies
only on division and multiplication by powers of 2, which assuming a binary
representation of integers (as we are) can be very efficiently implemented
using “right shift” and “left shift” operations. The algorithm takes positive
integers a and b as input, and runs as follows:

58 Euclid’s algorithm

r ← a, r′ ← b, e← 0
while 2 | r and 2 | r′ do r ← r/2, r′ ← r′/2, e← e+ 1
repeat

while 2 | r do r ← r/2
while 2 | r′ do r′ ← r′/2
if r′ < r then (r, r′)← (r′, r)
r′ ← r′ − r

until r′ = 0
d← 2e · r
output d

Show that this algorithm correctly computes gcd(a, b), and runs in time
O(`2), where ` := max(len(a), len(b)).

4.2 The extended Euclidean algorithm

Let a and b be non-negative integers, and let d := gcd(a, b). We know by
Theorem 1.6 that there exist integers s and t such that as + bt = d. The
extended Euclidean algorithm allows us to efficiently compute s and t.
The following theorem describes the algorithm, and also states a number
of important facts about the relative sizes of the numbers that arise during
the computation—these size estimates will play a crucial role, both in the
analysis of the running time of the algorithm, as well as in applications of
the algorithm that we will discuss later.

Theorem 4.3. Let a, b, r0, r1, . . . , r`+1 and q1, . . . , q` be as in Theorem 4.1.
Define integers s0, s1, . . . , s`+1 and t0, t1, . . . , t`+1 as follows:

s0 := 1, t0 := 0,

s1 := 0, t1 := 1,

and for i = 1, . . . , `,

si+1 := si−1 − siqi, ti+1 := ti−1 − tiqi.

Then
(i) for i = 0, . . . , `+ 1, we have sia+ tib = ri; in particular, s`a+ t`b =

gcd(a, b);
(ii) for i = 0, . . . , `, we have siti+1 − tisi+1 = (−1)i;
(iii) for i = 0, . . . , `+ 1, we have gcd(si, ti) = 1;
(iv) for i = 0, . . . , `, we have titi+1 ≤ 0 and |ti| ≤ |ti+1|; for i = 1, . . . , `,

we have sisi+1 ≤ 0 and |si| ≤ |si+1|;
(v) for i = 1, . . . , `+ 1, we have ri−1|ti| ≤ a and ri−1|si| ≤ b.

4.2 The extended Euclidean algorithm 59

Proof. (i) is easily proved by induction on i. For i = 0, 1, the statement is
clear. For i = 2, . . . , `+ 1, we have

sia+ tib = (si−2 − si−1qi−1)a+ (ti−2 − ti−1qi−1)b

= (si−2a+ ti−2b)− (si−1a+ ti−1b)qi
= ri−2 − ri−1qi−1 (by induction)

= ri.

(ii) is also easily proved by induction on i. For i = 0, the statement is
clear. For i = 1, . . . , `, we have

siti+1 − tisi+1 = si(ti−1 − tiqi)− ti(si−1 − siqi)

= −(si−1ti − ti−1si) (after expanding and simplifying)

= −(−1)i−1 = (−1)i (by induction).

(iii) follows directly from (ii).
For (iv), one can easily prove both statements by induction on i. The

statement involving the ti is clearly true for i = 0; for i = 1, . . . , `, we have
ti+1 = ti−1 − tiqi, and since by the induction hypothesis ti−1 and ti have
opposite signs and |ti| ≥ |ti−1|, it follows that |ti+1| = |ti−1| + |ti|qi ≥ |ti|,
and that the sign of ti+1 is the opposite of that of ti. The proof of the
statement involving the si is the same, except that we start the induction
at i = 1.

For (v), one considers the two equations:

si−1a+ ti−1b = ri−1,

sia+ tib = ri.

Subtracting ti−1 times the second equation from ti times the first, applying
(ii), and using the fact that ti and ti−1 have opposite sign, we obtain

a = |tiri−1 − ti−1ri| ≥ |ti|ri−1,

from which the inequality involving ti follows. The inequality involving si

follows similarly, subtracting si−1 times the second equation from si times
the first. 2

Suppose that a > 0 in the above theorem. Then for i = 1, . . . , ` + 1, the
value ri−1 is a positive integer, and so part (v) of the theorem implies that
|ti| ≤ a/ri−1 ≤ a and |si| ≤ b/ri−1 ≤ b. Moreover, if a > 1 and b > 0, then
` > 0 and r`−1 ≥ 2, and hence |t`| ≤ a/2 and |s`| ≤ b/2.

Example 4.2. We continue with Example 4.1. The numbers si and ti are
easily computed from the qi:

60 Euclid’s algorithm

i 0 1 2 3 4
ri 100 35 30 5 0
qi 2 1 6
si 1 0 1 -1 7
ti 0 1 -2 3 -20

So we have gcd(a, b) = 5 = −a+ 3b. 2

We can easily turn the scheme described in Theorem 4.3 into a simple
algorithm, taking as input integers a, b, such that a ≥ b ≥ 0, and producing
as output integers d, s, and t, such that d = gcd(a, b) and as+ bt = d:

r ← a, r′ ← b

s← 1, s′ ← 0
t← 0, t′ ← 1
while r′ 6= 0 do

q ← br/r′c, r′′ ← r mod r′

(r, s, t, r′, s′, t′)← (r′, s′, t′, r′′, s− s′q, t− t′q)
d← r

output d, s, t

Theorem 4.4. The extended Euclidean algorithm runs in time

O(len(a) len(b)).

Proof. We may assume that b > 0. It suffices to analyze the cost of comput-
ing the sequences {si} and {ti}. Consider first the cost of computing all of
the ti, which is O(τ), where τ :=

∑`
i=1 len(ti) len(qi). We have t1 = 1 and,

by part (v) of Theorem 4.3, we have |ti| ≤ a for i = 2, . . . , `. Arguing as in
the proof of Theorem 4.2, we have

τ ≤ len(q1) + len(a)
∑̀
i=2

len(qi) ≤ len(q1) + len(a)(`− 1 + log2(
∏̀
i=2

qi))

= O(len(a) len(b)),

where we have used the fact that
∏`

i=2 qi ≤ b. An analogous argument shows
that one can also compute all of the si in time O(len(a) len(b)), and in fact,
in time O(len(b)2). 2

Another, instructive way to view Theorem 4.3 is as follows. For i =
1, . . . , `, we have (

ri
ri+1

)
=

(
0 1
1 −qi

) (
ri−1

ri

)
.

4.2 The extended Euclidean algorithm 61

Recursively expanding the right-hand side of this equation, we have for
i = 0, . . . , `, (

ri
ri+1

)
= Mi

(
a

b

)
,

where for i = 1, . . . , `, the matrix Mi is defined as

Mi :=
(

0 1
1 −qi

)
· · ·

(
0 1
1 −q1

)
.

If we define M0 to be the 2× 2 identity matrix, then it is easy to see that

Mi =
(
si ti
si+1 ti+1

)
,

for i = 0, . . . , `. From this observation, part (i) of Theorem 4.3 is immediate,
and part (ii) follows from the fact that Mi is the product of i matrices, each
of determinant −1, and the determinant of Mi is evidently siti+1 − tisi+1.

Exercise 4.2. One can extend the binary gcd algorithm discussed in Ex-
ercise 4.1 so that in addition to computing d = gcd(a, b), it also computes s
and t such that as + bt = d. Here is one way to do this (again, we assume
that a and b are positive integers):

r ← a, r′ ← b, e← 0
while 2 | r and 2 | r′ do r ← r/2, r′ ← r′/2, e← e+ 1
ã← r, b̃← r′, s← 1, t← 0, s′ ← 0, t′ ← 1
repeat

while 2 | r do
r ← r/2
if 2 | s and 2 | t then s← s/2, t← t/2

else s← (s+ b̃)/2, t← (t− ã)/2
while 2 | r′ do

r′ ← r′/2
if 2 | s′ and 2 | t′ then s′ ← s′/2, t′ ← t′/2

else s′ ← (s′ + b̃)/2, t′ ← (t′ − ã)/2
if r′ < r then (r, s, t, r′, s′, t′)← (r′, s′, t′, r, s, t)
r′ ← r′ − r, s′ ← s′ − s, t′ ← t′ − t

until r′ = 0
d← 2e · r, output d, s, t

Show that this algorithm is correct and runs in time O(`2), where ` :=
max(len(a), len(b)). In particular, you should verify that all of the divisions

62 Euclid’s algorithm

by 2 performed by the algorithm yield integer results. Moreover, show that
the outputs s and t are of length O(`).

4.3 Computing modular inverses and Chinese remaindering

One application of the extended Euclidean algorithm is to the problem of
computing multiplicative inverses in Zn, where n > 1.

Given y ∈ {0, . . . , n − 1}, in time O(len(n)2), we can determine if y is
relatively prime to n, and if so, compute y−1 mod n, as follows. We run
the extended Euclidean algorithm on inputs a := n and b := y, obtaining
integers d, s, and t, such that d = gcd(n, y) and ns+ yt = d. If d 6= 1, then
y does not have a multiplicative inverse modulo n. Otherwise, if d = 1, then
t is a multiplicative inverse of y modulo n; however, it may not lie in the
range {0, . . . , n−1}, as required. Based on Theorem 4.3 (and the discussion
immediately following it), we know that |t| ≤ n/2 < n; therefore, either
t ∈ {0, . . . , n− 1}, or t < 0 and t+ n ∈ {0, . . . , n− 1}. Thus, y−1 mod n is
equal to either t or t+ n.

We also observe that the Chinese remainder theorem (Theorem 2.8) can
be made computationally effective:

Theorem 4.5. Given integers n1, . . . , nk and a1, . . . , ak, where n1, . . . , nk

are pairwise relatively prime, and where ni > 1 and 0 ≤ ai < ni for i =
1, . . . , k, we can compute the integer z, such that 0 ≤ z < n and z ≡
ai (mod ni) for i = 1, . . . , k, where n :=

∏
i ni, in time O(len(n)2).

Proof. Exercise (just use the formulas in the proof of Theorem 2.8, and see
Exercises 3.22 and 3.23). 2

Exercise 4.3. In this exercise and the next, you are to analyze an “incre-
mental Chinese remaindering algorithm.” Consider the following algorithm,
which takes as input integers z, n, z′, n′, such that

n′ > 1, gcd(n, n′) = 1, 0 ≤ z < n, and 0 ≤ z′ < n′.

It outputs integers z′′, n′′, such that

n′′ = nn′, 0 ≤ z′′ < n′′, z′′ ≡ z (mod n), and z′′ ≡ z′ (mod n′).

It runs as follows:

1. Set ñ← n−1 mod n′.

2. Set h← ((z′ − z)ñ) mod n′.

4.4 Speeding up algorithms via modular computation 63

3. Set z′′ ← z + nh.

4. Set n′′ ← nn′.

5. Output z′′, n′′.

Show that the output z′′, n′′ of the algorithm satisfies the conditions stated
above, and estimate the running time of the algorithm.

Exercise 4.4. Using the algorithm in the previous exercise as a subroutine,
give a simple O(len(n)2) algorithm that takes as input integers n1, . . . , nk

and a1, . . . , ak, where n1, . . . , nk are pairwise relatively prime, and where
ni > 1 and 0 ≤ ai < ni for i = 1, . . . , k, and outputs integers z and n such
that 0 ≤ z < n, n =

∏
i ni, and z ≡ ai (mod ni) for i = 1, . . . , k. The

algorithm should be “incremental,” in that it processes the pairs (ni, ai) one
at a time, using time O(len(n) len(ni)) to process each such pair.

Exercise 4.5. Suppose you are given α1, . . . , αk ∈ Z∗n. Show how to com-
pute α−1

1 , . . . , α−1
k by computing one multiplicative inverse modulo n, and

performing less than 3k multiplications modulo n. This result is useful, as
in practice, if n is several hundred bits long, it may take 10–20 times longer
to compute multiplicative inverses modulo n than to multiply modulo n.

4.4 Speeding up algorithms via modular computation

An important practical application of the above “computational” version
(Theorem 4.5) of the Chinese remainder theorem is a general algorithmic
technique that can significantly speed up certain types of computations in-
volving long integers. Instead of trying to describe the technique in some
general form, we simply illustrate the technique by means of a specific ex-
ample: integer matrix multiplication.

Suppose we have two m × m matrices A and B whose entries are large
integers, and we want to compute the product matrix C := AB. If the
entries of A are (ars) and the entries of B are (bst), then the entries (crt)
of C are given by the usual rule for matrix multiplication:

crt =
m∑

s=1

arsbst.

Suppose further that H is the maximum absolute value of the entries
in A and B, so that the entries in C are bounded in absolute value by
H ′ := H2m. Then by just applying the above formula, we can compute
the entries of C using m3 multiplications of numbers of length at most
len(H), and m3 additions of numbers of length at most len(H ′), where

64 Euclid’s algorithm

len(H ′) ≤ 2 len(H) + len(m). This yields a running time of

O(m3 len(H)2 +m3 len(m)). (4.1)

If the entries of A and B are large relative to m, specifically, if
len(m) = O(len(H)2), then the running time is dominated by the
first term above, namely

O(m3 len(H)2).

Using the Chinese remainder theorem, we can actually do much better
than this, as follows.

For any integer n > 1, and for all r, t = 1, . . . ,m, we have

crt ≡
m∑

s=1

arsbst (mod n). (4.2)

Moreover, if we compute integers c′rt such that

c′rt ≡
m∑

s=1

arsbst (mod n) (4.3)

and if we also have

−n/2 ≤ c′rt < n/2 and n > 2H ′, (4.4)

then we must have

crt = c′rt. (4.5)

To see why (4.5) follows from (4.3) and (4.4), observe that (4.2) and (4.3)
imply that crt ≡ c′rt (mod n), which means that n divides (crt − c′rt). Then
from the bound |crt| ≤ H ′ and from (4.4), we obtain

|crt − c′rt| ≤ |crt|+ |c′rt| ≤ H ′ + n/2 < n/2 + n/2 = n.

So we see that the quantity (crt − c′rt) is a multiple of n, while at the
same time this quantity is strictly less than n in absolute value; hence, this
quantity must be zero. That proves (4.5).

So from the above discussion, to compute C, it suffices to compute the
entries of C modulo n, where we have to make sure that we compute “bal-
anced” remainders in the interval [−n/2, n/2), rather than the more usual
“least non-negative” remainders.

To compute C modulo n, we choose a number of small integers n1, . . . , nk,
relatively prime in pairs, and such that the product n := n1 · · ·nk is just a
bit larger than 2H ′. In practice, one would choose the ni to be small primes,
and a table of such primes could easily be computed in advance, so that all

4.4 Speeding up algorithms via modular computation 65

problems up to a given size could be handled. For example, the product of
all primes of at most 16 bits is a number that has more than 90, 000 bits.
Thus, by simply pre-computing and storing such a table of small primes,
we can handle input matrices with quite large entries (up to about 45, 000
bits).

Let us assume that we have pre-computed appropriate small primes
n1, . . . , nk. Further, we shall assume that addition and multiplication mod-
ulo any of the ni can be done in constant time. This is reasonable, both from
a practical and theoretical point of view, since such primes easily “fit” into
a memory cell. Finally, we assume that we do not use more of the numbers
ni than are necessary, so that len(n) = O(len(H ′)) and k = O(len(H ′)).

To compute C, we execute the following steps:

1. For each i = 1, . . . , k, do the following:

(a) compute â(i)
rs ← ars mod ni for r, s = 1, . . . ,m,

(b) compute b̂(i)st ← bst mod ni for s, t = 1, . . . ,m,

(c) For r, t = 1, . . . ,m, compute

ĉ
(i)
rt ←

m∑
s=1

â(i)
rs b̂

(i)
st mod ni.

2. For each r, t = 1, . . . ,m, apply the Chinese remainder theorem to
ĉ

(1)
rt , ĉ

(2)
rt , . . . , ĉ

(k)
rt , obtaining an integer crt, which should be computed

as a balanced remainder modulo n, so that n/2 ≤ crt < n/2.

3. Output (crt : r, t = 1, . . . ,m).

Note that in Step 2, if our Chinese remainder algorithm happens to be
implemented to return an integer z with 0 ≤ z < n, we can easily get a
balanced remainder by just subtracting n from z if z ≥ n/2.

The correctness of the above algorithm has already been established. Let
us now analyze its running time. The running time of Steps 1a and 1b is
easily seen (see Exercise 3.23) to be O(m2 len(H ′)2). Under our assumption
about the cost of arithmetic modulo small primes, the cost of Step 1c is
O(m3k), and since k = O(len(H ′)) = O(len(H) + len(m)), the cost of this
step is O(m3(len(H) + len(m))). Finally, by Theorem 4.5, the cost of Step 2
is O(m2 len(H ′)2). Thus, the total running time of this algorithm is easily
calculated (discarding terms that are dominated by others) as

O(m2 len(H)2 +m3 len(H) +m3 len(m)).

Compared to (4.1), we have essentially replaced the term m3 len(H)2 by
m2 len(H)2 + m3 len(H). This is a significant improvement: for example,

66 Euclid’s algorithm

if len(H) ≈ m, then the running time of the original algorithm is O(m5),
while the running time of the modular algorithm is O(m4).

Exercise 4.6. Apply the ideas above to the problem of computing the
product of two polynomials whose coefficients are large integers. First, de-
termine the running time of the “obvious” algorithm for multiplying two
such polynomials, then design and analyze a “modular” algorithm.

4.5 Rational reconstruction and applications

We next state a theorem whose immediate utility may not be entirely ob-
vious, but we quickly follow up with several very neat applications. The
general problem we consider here, called rational reconstruction, is as
follows. Suppose that there is some rational number ŷ that we would like to
get our hands on, but the only information we have about ŷ is the following:
• First, suppose that we know that ŷ may be expressed as r/t for

integers r, t, with |r| ≤ r∗ and |t| ≤ t∗—we do not know r or t, but
we do know the bounds r∗ and t∗.

• Second, suppose that we know integers y and n such that n is rela-
tively prime to t, and y = rt−1 mod n.

It turns out that if n is sufficiently large relative to the bounds r∗ and t∗,
then we can virtually “pluck” ŷ out of the extended Euclidean algorithm
applied to n and y. Moreover, the restriction that n is relatively prime to
t is not really necessary; if we drop this restriction, then our assumption is
that r ≡ ty (mod n), or equivalently, r = sn+ ty for some integer s.

Theorem 4.6. Let r∗, t∗, n, y be integers such that r∗ > 0, t∗ > 0, n ≥ 4r∗t∗,
and 0 ≤ y < n. Suppose we run the extended Euclidean algorithm with
inputs a := n and b := y. Then, adopting the notation of Theorem 4.3, the
following hold:

(i) There exists a unique index i = 1, . . . , `+1 such that ri ≤ 2r∗ < ri−1;
note that ti 6= 0 for this i.
Let r′ := ri, s′ := si, and t′ := ti.

(ii) Furthermore, for any integers r, s, t such that

r = sn+ ty, |r| ≤ r∗, and 0 < |t| ≤ t∗, (4.6)

we have

r = r′α, s = s′α, and t = t′α,

for some non-zero integer α.

4.5 Rational reconstruction and applications 67

Proof. By hypothesis, 2r∗ < n = r0. Moreover, since r0, . . . , r`, r`+1 = 0
is a decreasing sequence, and 1 = |t1|, |t2|, . . . , |t`+1| is a non-decreasing
sequence, the first statement of the theorem is clear.

Now let i be defined as in the first statement of the theorem. Also, let
r, s, t be as in (4.6).

From part (v) of Theorem 4.3 and the inequality 2r∗ < ri−1, we have

|ti| ≤
n

ri−1
<

n

2r∗
.

From the equalities ri = sin+ tiy and r = sn+ ty, we have the two congru-
ences:

r ≡ ty (mod n),

ri ≡ tiy (mod n).

Subtracting ti times the first from t times the second, we obtain

rti ≡ rit (mod n).

This says that n divides rti − rit. Using the bounds |r| ≤ r∗ and |ti| <
n/(2r∗), we see that |rti| < n/2, and using the bounds |ri| ≤ 2r∗, |t| ≤ t∗,
and 4r∗t∗ ≤ n, we see that |rit| ≤ n/2. It follows that

|rti − rit| ≤ |rti|+ |rit| < n/2 + n/2 = n.

Since n divides rti − rit and |rti − rit| < n, the only possibility is that

rti − rit = 0. (4.7)

Now consider the two equations:

r = sn+ ty

ri = sin+ tiy.

Subtracting ti times the first from t times the second, and using the identity
(4.7), we obtain n(sti − sit) = 0, and hence

sti − sit = 0. (4.8)

From (4.8), we see that ti | sit, and since from part (iii) of Theorem 4.3,
we know that gcd(si, ti) = 1, we must have ti | t. So t = tiα for some α, and
we must have α 6= 0 since t 6= 0. Substituting tiα for t in equations (4.7)
and (4.8) yields r = riα and s = siα. That proves the second statement of
the theorem. 2

68 Euclid’s algorithm

4.5.1 Application: Chinese remaindering with errors

One interpretation of the Chinese remainder theorem is that if we “encode”
an integer z, with 0 ≤ z < n, as the sequence (a1, . . . , ak), where ai = z mod
ni for i = 1, . . . , k, then we can efficiently recover z from this encoding. Here,
of course, n = n1 · · ·nk, and the integers n1, . . . , nk are pairwise relatively
prime.

But now suppose that Alice encodes z as (a1, . . . , ak), and sends this
encoding to Bob; however, during the transmission of the encoding, some
(but hopefully not too many) of the values a1, . . . , ak may be corrupted. The
question is, can Bob still efficiently recover the original z from its corrupted
encoding?

To make the problem more precise, suppose that the original, correct
encoding of z is (a1, . . . , ak), and the corrupted encoding is (ã1, . . . , ãk). Let
us define G ⊆ {1, . . . , k} to be the set of “good” positions i with ãi = ai,
and B ⊆ {1, . . . , k} to be the set of “bad” positions i with ãi 6= ai. We shall
assume that |B| ≤ `, where ` is some specified parameter.

Of course, if Bob hopes to recover z, we need to build some redundancy
into the system; that is, we must require that 0 ≤ z ≤ Z for some Z that is
somewhat smaller than n. Now, if Bob knew the location of bad positions,
and if the product of the integers ni at the good positions exceeds Z, then
Bob could simply discard the errors, and reconstruct z by applying the
Chinese remainder theorem to the values ai and ni at the good positions.
However, in general, Bob will not know a priori the location of the bad
positions, and so this approach will not work.

Despite these apparent difficulties, Theorem 4.6 may be used to solve the
problem quite easily, as follows. Let P be an upper bound on the product
of any ` of the integers n1, . . . , nk (e.g., we could take P to be the product
of the ` largest ni). Further, let us assume that n ≥ 4P 2Z.

Now, suppose Bob obtains the corrupted encoding (ã1, . . . , ãk). Here is
what Bob does to recover z:

1. Apply the Chinese remainder theorem, obtaining an integer y, with
0 ≤ y < n and y ≡ ãi (mod ni) for i = 1, . . . , k.

2. Run the extended Euclidean algorithm on a := n and b := y, and let
r′, t′ be the values obtained from Theorem 4.6 applied with r∗ := ZP

and t∗ := P .

3. If t′ | r′, output r′/t′; otherwise, output “error.”

We claim that the above procedure outputs z, under our assumption that
the set B of bad positions is of size at most `. To see this, let t :=

∏
i∈B ni.

By construction, we have 1 ≤ t ≤ P . Also, let r := tz, and note that

4.5 Rational reconstruction and applications 69

0 ≤ r ≤ r∗ and 0 < t ≤ t∗. We claim that

r ≡ ty (mod n). (4.9)

To show that (4.9) holds, it suffices to show that

tz ≡ ty (mod ni) (4.10)

for all i = 1, . . . , k. To show this, for each index i we consider two cases:

Case 1: i ∈ G. In this case, we have ai = ãi, and therefore,

tz ≡ tai ≡ tãi ≡ ty (mod ni).

Case 2: i ∈ B. In this case, we have ni | t, and therefore,

tz ≡ 0 ≡ ty (mod ni).

Thus, (4.10) holds for all i = 1, . . . , k, and so it follows that (4.9) holds.
Therefore, the values r′, t′ obtained from Theorem 4.6 satisfy

r′

t′
=
r

t
=
tz

t
= z.

One easily checks that both the procedures to encode and decode a value
z run in time O(len(n)2). If one wanted a practical implementation, one
might choose n1, . . . , nk to be, say, 16-bit primes, so that the encoding of a
value z consisted of a sequence of k 16-bit words.

The above scheme is an example of an error correcting code, and is
actually the integer analog of a Reed–Solomon code.

4.5.2 Application: recovering fractions from their decimal

expansions

Suppose Alice knows a rational number z := s/t, where s and t are integers
with 0 ≤ s < t, and tells Bob some of the high-order digits in the decimal
expansion of z. Can Bob determine z? The answer is yes, provided Bob
knows an upper bound T on t, and provided Alice gives Bob enough digits.
Of course, from grade school, Bob probably remembers that the decimal
expansion of z is ultimately periodic, and that given enough digits of z so
as to include the periodic part, he can recover z; however, this technique is
quite useless in practice, as the length of the period can be huge—Θ(T) in
the worst case (see Exercises 4.8–4.10 below). The method we discuss here
requires only O(len(T)) digits.

To be a bit more general, suppose that Alice gives Bob the high-order k

70 Euclid’s algorithm

digits in the d-ary expansion of z, for some base d > 1. Now, we can express
z in base d as

z = z1d
−1 + z2d

−2 + z3d
−3 + · · · ,

and the sequence of digits z1, z2, z3, . . . is uniquely determined if we require
that the sequence does not terminate with an infinite run of (d− 1)-digits.
Suppose Alice gives Bob the first k digits z1, . . . , zk. Define

y := z1d
k−1 + · · ·+ zk−1d+ zk = bzdkc.

Let us also define n := dk, so that y = bznc.
Now, if n is much smaller than T 2, the number z is not even uniquely

determined by y, since there are Ω(T 2) distinct rational numbers of the
form s/t, with 0 ≤ s < t ≤ T (see Exercise 1.18). However, if n ≥ 4T 2,
then not only is z uniquely determined by y, but using Theorem 4.6, we can
compute it as follows:

1. Run the extended Euclidean algorithm on inputs a := n and b := y,
and let s′, t′ be as in Theorem 4.6, using r∗ := t∗ := T .

2. Output s′, t′.

We claim that z = −s′/t′. To prove this, observe that since y = bznc =
b(ns)/tc, if we set r := (ns) mod t, then we have

r = sn− ty and 0 ≤ r < t ≤ t∗.

It follows that the integers s′, t′ from Theorem 4.6 satisfy s = s′α and
−t = t′α for some non-zero integer α. Thus, s′/t′ = −s/t, which proves the
claim.

We may further observe that since the extended Euclidean algorithm guar-
antees that gcd(s′, t′) = 1, not only do we obtain z, but we obtain z expressed
as a fraction in lowest terms.

It is clear that the running time of this algorithm is O(len(n)2).

Example 4.3. Alice chooses numbers 0 ≤ s < t ≤ 1000, and tells Bob the
high-order seven digits y in the decimal expansion of z := s/t, from which
Bob should be able to compute z. Suppose s = 511 and t = 710. Then
s/t ≈ 0.71971830985915492958, and so y = 7197183 and n = 107. Running
the extended Euclidean algorithm on inputs a := n and b := y, Bob obtains
the following data:

4.5 Rational reconstruction and applications 71

i ri qi si ti
0 10000000 1 0
1 7197183 1 0 1
2 2802817 2 1 -1
3 1591549 1 -2 3
4 1211268 1 3 -4
5 380281 3 -5 7
6 70425 5 18 -25
7 28156 2 -95 132
8 14113 1 208 -289
9 14043 1 -303 421

10 70 200 511 -710
11 43 1 -102503 142421
12 27 1 103014 -143131
13 16 1 -205517 285552
14 11 1 308531 -428683
15 5 2 -514048 714235
16 1 5 1336627 -1857153
17 0 -7197183 10000000

The first ri that meets or falls below the threshold 2r∗ = 2000 is at
i = 10, and Bob reads off s′ = 511 and t′ = −710, from which he obtains
z = −s′/t′ = 511/710. 2

Exercise 4.7. Show that given integers s, t, k, with 0 ≤ s < t, and k >

0, we can compute the kth digit in the decimal expansion of s/t in time
O(len(k) len(t)2).

For the following exercises, we need a definition: a sequence S :=
(z1, z2, z3, . . .) of elements drawn from some arbitrary set is called (k, `)-
periodic for integers k ≥ 0 and ` ≥ 1 if zi = zi+` for all i > k. S is called
ultimately periodic if it is (k, `)-periodic for some (k, `).

Exercise 4.8. Show that if a sequence S is ultimately periodic, then it
is (k∗, `∗)-periodic for some uniquely determined pair (k∗, `∗) for which the
following holds: for any pair (k, `) such that S is (k, `)-periodic, we have
k∗ ≤ k and `∗ ≤ `.

The value `∗ in the above exercise is called the period of S, and k∗ is
called the pre-period of S. If its pre-period is zero, then S is called purely
periodic.

72 Euclid’s algorithm

Exercise 4.9. Let z be a real number whose base-d expansion is an ulti-
mately periodic sequence. Show that z is rational.

Exercise 4.10. Let z = s/t ∈ Q, where s and t are relatively prime integers
with 0 ≤ s < t, and let d > 1 be an integer.

(a) Show that there exist integers k, k′ such that 0 ≤ k < k′ and sdk ≡
sdk′ (mod t).

(b) Show that for integers k, k′ with 0 ≤ k < k′, the base-d expansion of
z is (k, k′ − k)-periodic if and only if sdk ≡ sdk′ (mod t).

(c) Show that if gcd(t, d) = 1, then the base-d expansion of z is purely
periodic with period equal to the multiplicative order of d modulo t.

(d) More generally, show that if k is the smallest non-negative integer
such that d and t′ := t/ gcd(dk, t) are relatively prime, then the base-
d expansion of z is ultimately periodic with pre-period k and period
equal to the multiplicative order of d modulo t′.

A famous conjecture of Artin postulates that for any integer d, not equal
to −1 or to the square of an integer, there are infinitely many primes t such
that d has multiplicative order t− 1 modulo t. If Artin’s conjecture is true,
then by part (c) of the previous exercise, for any d > 1 that is not a square,
there are infinitely many primes t such that the base-d expansion of s/t, for
any 0 < s < t, is a purely periodic sequence of period t− 1. In light of these
observations, the “grade school” method of computing a fraction from its
decimal expansion using the period is hopelessly impractical.

4.5.3 Applications to symbolic algebra

Rational reconstruction also has a number of applications in symbolic alge-
bra. We briefly sketch one such application here. Suppose that we want to
find the solution v to the equation

vA = w,

where we are given as input a non-singular square integer matrix A and an
integer vector w. The solution vector v will, in general, have rational en-
tries. We stress that we want to compute the exact solution v, and not some
floating point approximation to it. Now, we could solve for v directly us-
ing Gaussian elimination; however, the intermediate quantities computed by
that algorithm would be rational numbers whose numerators and denomina-
tors might get quite large, leading to a rather lengthy computation (however,

4.6 Notes 73

it is possible to show that the overall running time is still polynomial in the
input length).

Another approach is to compute a solution vector modulo n, where n is
a power of a prime that does not divide the determinant of A. Provided n

is large enough, one can then recover the solution vector v using rational
reconstruction. With this approach, all of the computations can be carried
out using arithmetic on integers not too much larger than n, leading to a
more efficient algorithm. More of the details of this procedure are developed
later, in Exercise 15.13.

4.6 Notes

The Euclidean algorithm as we have presented it here is not the fastest
known algorithm for computing greatest common divisors. The asymptot-
ically fastest known algorithm for computing the greatest common divisor
of two numbers of bit length at most ` runs in time O(` len(`)) on a RAM,
and the smallest Boolean circuits are of size O(` len(`)2 len(len(`))). This
algorithm is due to Schönhage [81]. The same complexity results also hold
for the extended Euclidean algorithm, as well as Chinese remaindering and
rational reconstruction.

Experience suggests that such fast algorithms for greatest common divi-
sors are not of much practical value, unless the integers involved are very
large—at least several tens of thousands of bits in length. The extra “log”
factor and the rather large multiplicative constants seem to slow things down
too much.

The binary gcd algorithm (Exercise 4.1) is due to Stein [95]. The ex-
tended binary gcd algorithm (Exercise 4.2) was first described by Knuth
[54], who attributes it to M. Penk. Our formulation of both of these al-
gorithms closely follows that of Menezes, van Oorschot, and Vanstone [62].
Experience suggests that the binary gcd algorithm is faster in practice than
Euclid’s algorithm.

Our exposition of Theorem 4.6 is loosely based on Bach [11]. A somewhat
“tighter” result is proved, with significantly more effort, by Wang, Guy, and
Davenport [97]. However, for most practical purposes, the result proved
here is just as good. The application of Euclid’s algorithm to computing a
rational number from the first digits of its decimal expansion was observed
by Blum, Blum, and Shub [17], where they considered the possibility of
using such sequences of digits as a pseudo-random number generator—the
conclusion, of course, is that this is not such a good idea.

